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Abstract

This study compares two interpolation methods in the problem of a local GNSS/levelling (quasi) geoid modelling. It uses raw data,no global geopotential model is involved. The methods differ as to the complexity of modelling procedure and theoreticalbackground, they are ordinary kriging/least-squares collocation with constant trend and inverse distance weighting (IDW). Thecomparison itself was done through leave-one-out and random (Monte Carlo) cross-validation. Ordinary kriging and IDWperformance was tested with a local (using limited number of data) and global (using all available data) neighbourhoods usingvarious planar covariance function models in case of kriging and various exponents (power parameter) in case of IDW. For thestudy area both methods assure an overall accuracy level, measured by mean absolute error, root mean square error and medianabsolute error, of less than 1 cm. Although the method of IDW is much simpler, a suitably selected parameters (also trend removal)may contribute to differences between methods that are virtually negligible (fraction of a millimetre).
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1 Introduction

In general, Global Navigation Satellite Systems (GNSS) provide3D position (x, y, z) of any point on or above the Earth in Earth-Centered, Earth-Fixed system and it is the native system in whichGNSS coordinates are delivered. Since 3D Cartesian coordinates areimpractical on a surveying daily basis they are converted to geodeticcoordinates: latitude, longitude and ellipsoidal height, traditionallydenoted as (φ, λ, h). The latter mentioned is still problematic dueto its purely geometric character related with adopted ellipsoidalmodel of the Earth. Hence, GNSS-based heights are not consistentwith physical heights and require conversion in a valid height sys-tem, e.g., orthometric or normal (Hofmann-Wellenhof and Moritz,2006).Through the years many interpolation methods have been in-volved in generating conversion surfaces (in local and regionalscales) enabling transition between geometric and physical heights,e.g., polynomial regression (Borowski and Banaś, 2019; Gucek andBašić, 2009; Kim et al., 2018; Zhong, 1997), neural networks (Aky-

ilmaz et al., 2009; Kaloop et al., 2021), geographically weighted re-gression (Dawod and Abdel-Aziz, 2020), kriging (Ligas and Szom-bara, 2018; Orejuela et al., 2021), least-squares collocation (LSC)(You, 2006), Inverse Distance Weighting (IDW) (Radanović andBašić, 2018) to mention only a few. Very often, conversion surfacestake the form of corrector surfaces due to the use of global geopo-tential models or gravimetric models generated prior to eliminat-ing inconsistencies by fitting to GNSS/levelling data (Elshambaky,2018; You, 2006).This study uses ordinary kriging which is identical to leastsquares collocation with constant trend (Ligas, 2022; Schaffrin,2001) and may be described by two acronyms: BLUE (Best Lin-ear Unbiased Estimation) and BLUP (Best Linear Unbiased Predic-tion). BLUE concerns the estimation of a fixed effect (unknownexpected value) and BLUP prediction of a random effect (signal orsignal+noise). The spine of two methods is a structure function(covariance or semivariance) that captures spatial continuity andvariability of the data (random field being a representation of theanalysed phenomena). IDW is a simple deterministic interpolation
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Figure 1. Spatial distribution of GNSS/leveling points (x, y in EPSG:2178)

method relying on an a priori assumption of decreasing weightswith a distance from the target point (Babak and Deutsch, 2009).The goal of this study is to compare these two methods differingin complexity of theory and computational effort and should notbe directly connected to the one of Banasik et al. (2020) which wasa kind of quasi-geoid model development report. The comparisonitself is made in cross-validation mode with varying steering pa-rameters of the methods, i.e., structure function and number ofnearest neighbours in case of kriging/LSC, and power parameter(exponent) and number of nearest neighbours in case of IDW.

2 Study area and data used

Study area covers the city of Krakow in the south-eastern part ofPoland and is spread over approximately 20 km x 30 km. In orderto validate the effectiveness of kriging/LSC and IDW preceded by1st and 2nd degree polynomial trend removal, 66 GNSS/levellingpoints were used. No points were excluded from the analysis. PL-ETRF2000 and PL-EVRF2007-NH are used for ellipsoidal and nor-mal heights; respectively. Planar cartesian coordinates [x, y] ex-pressed in PL-2000/7 coordinate system (EPSG:2178). Spatial dis-tribution of the GNSS/levelling points used for modelling purposesis shown in Figure 1. Details as to GNSS and leveling measurementsand accuracy issues are reported in Banasik et al. (2020).

3 Generation of local quasi-geoidmodels,meth-
ods, and their validation

3.1 General methodology of local quasi-geoid models
construction

The study uses GNSS-derived ellipsoidal and levelled normalheights, without the use of external data like a gravimetric geoidmodel or a global geopotential model, to integrate them through alocal conversion surface modelling. In general, the local conversionsurfaces may be expressed by:
ζ = h – HN = µ (υ) + δ (υ) (1)

where ζ is a height anomaly, h stands for an ellipsoidal height(GNSS-based),HN is a normal height (levelling-based), µ is a trend,
δ is a disturbance (potentially spatially correlated) and υ = [x, y]stands for a position.In this contribution, kriging/least squares collocation and asimple distance-based interpolation method, i.e., inverse distanceweighting have been used. Also, a polynomial trend surface fit-ting approach was adopted since it is the most obvious and themost common way of approximating spatially varying phenomena(Borowski and Banasik, 2020; Tusat and Mikailsoy, 2018). It wasused in combination with the methods mentioned above and played

a role of a long wavelength component in height anomalies. IDWwas chosen due to its simplicity. Kriging (LSC), which is decidedlymore complex than IDW, was used since it has a grounded posi-tion in different spatial interpolation problems. In both krigingand IDW, the trend models in Equation (1) were modelled by simplepolynomial surfaces of low degree (1st and 2nd), namely:
µ (υ) = β0 + β1x + β2y (2)
µ (υ) = β0 + β1x + β2y + β3xy + β4x2 + β5y2 (3)

and their reduced versions resulting from eliminating parameters
β that were not statistically significant. The models were fit withthe least squares method. Whilst developing the approximationfunction a mapping of the spatial domain onto a unit square hasbeen used according to the formulas (to avoid possible numericalproblems):

Xi = xi – xmin
xmax – xmin Yi = yi – ymin

ymax – ymin (4)
where xmin, xmax, ymin, ymax stand for extreme values of coordi-nates for a bounding rectangle.The goal of the study was to examine whether the method likekriging (LSC) may substantially outperform IDW in the local heightanomaly field modelling problem. The study addresses also a ques-tion whether the use of a global neighbourhood (all available data)provides any improvement over a local neighbourhood (limitednumber of data) in the modelling procedure. In the case of IDW,the conducted tests were also to check whether commonly usedexponent value equal to 2 is always justifiable. The methods wereexhaustively tested, as to the predictive capability of the model (out-of-sample), in two variants of cross-validation technique: leave-one-out (LOOCV) and random (Monte Carlo, MCCV). The first men-tioned rests on a sequential removal of a single observation from adataset, predicting its value on the basis of the model built from theremaining data and a comparison of the predicted value with thereference value previously removed. The second variant rests ona random removal of a given percentage of observations from thedata set (20% adopted in this study, 14 points), forecasting theirvalues on the basis of the model built from the remaining data andcomparison with reference values (previously removed) and sucha procedure is repeated n-times (1000 repetitions adopted in thisstudy). This way of testing gives the accuracy characteristics of theprediction model and, in fact, plays two roles. Firstly, it helps toselect optimal steering parameters within a given approach, here,in both IDW (number of nearest neighbours, power parameter) andkriging (number of nearest neighbours, semivariogram model).Secondly, it gives the answer which approach could claim to be thebest among examined as far as accuracy characteristics are con-sidered. It also allows to assess the stability of the adopted model,i.e., how the change of steering parameters impacts the results. Inboth cross-validation variants the root mean square, mean absolute,median absolute cross-validation errors were used. All the abovementioned characteristics are based on the differences between theobserved values (removed) and the corresponding model-basedpredicted values.
3.2 Kriging/Least squares collocation

Kriging is a large family of univariate and multivariate linear andnonlinear predictors within geostatistics – discipline that has itsroots in mining and geology and statistical methods used therein.In its linear form it is equivalent to LSC (Ligas, 2022; Schaffrin,2001) that is characterized as an advanced method that combinesadjustment, filtering and prediction in one computational proce-dure (Moritz, 1972). The backbone of the methods is a structurefunction of a random field that is a representation of a phenomenon
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under study. In the LSC the covariance function (second-order sta-tionarity) plays a key role, on the other hand, in geostatistics it isthe semivariance function (intrinsic stationarity). The two struc-ture functions are equivalent under the second-order stationarity,namely:
C
(
d
) = C (0) – γ

(
d
) = (

σ2
n + σ2

s
) – γ

(
d
) (5)

where: σn2 is a variance of noise (nugget effect), σs2 is a varianceof a signal (partial sill), d is a distance.Since the least-squares collocation method is better knownwithin the geodetic community, this study adopts geostatisticalterminology. In both methods a random function (or simply thedata) may be decomposed into trend, signal and noise, what maybe expressed as (the 2nd row concerns a single point prediction):
observedpredicted

Z (υ) = µ (υ)+s (υ)+ϵ (υ) = trend+signal+noise
S (υ0) = µ (υ0) + s (υ0) = trend + signal (6)

where Z stands for observed data, µ is a trend model, either a func-tion of a position in space or a constant, s is a random signal, ϵstands for noise, υ stands for a position in space, here planar coor-dinates υ = [x, y].The most widely form of kriging, i.e., ordinary kriging (Wacker-nagel, 2003) is used in this contribution. Ordinary kriging is opti-mal in the sense of BLUP if the mean value of a random function isan unknown constant (Cressie, 1993). It is identical to least-squarescollocation with parameters (Ligas, 2022; Schaffrin, 2001) wherethe trend is modelled as an unknown constant. In this case thefollowing stochastic characteristics holds (denotation of location υwill be omitted):
• Expected value of either signal or noise is zero:

E (ϵ) = E (s) = 0, E (s0) = 0; (7)
• Signal and noise are uncorrelated:

E
(
sϵT

) = E(ϵsT) = 0 (8)
Covariance matrix of sample disturbances (also observations –observations or data – data) which is the sum of a covariance matrixof the signal Ωss and a covariance matrix of noise Ωϵϵ is given by:

E
[(s + ϵ) (s + ϵ)T] = E(ssT)+E(ϵϵT) = Ωss+Ωϵϵ = ΩZZ (9)
Cross – covariance vector between sample signal and predictionsignal (or observations – prediction signal) reads:

E
[(s+ϵ) sT0]=E(ssT0)+E(ϵsT0)=E(ssT0)=E(ZsT0)=ωss0=ωZs0(10)

and a signal variance:
E
(
s0sT0

) = E(s20) = E(s2) = σ2
s (11)

Having in mind the above characteristic the ordinary (filtered)kriging predictor (or least-squares collocation with an unknownconstant trend) may be expressed as:
Ŝ0 = µ̂ + ωT

SS0Ω–1
ZZ (Z – uµ̂) (12)

where the unknown constant mean value is estimated via general-ized least squares:
µ̂ = (

uTΩ–1
ZZu

)–1
uTΩ–1

ZZZ (13)

and u is a vector of ones.The quality of prediction is measured through the predictionvariance:
σ2
OFK = σ2

S – ωT
SS0Ω–1

ZZωSS0 +
+ (1 – ωT

SS0Ω–1
ZZu

)(
uTΩ–1

ZZu
)–1 (1 – ωT

SS0Ω–1
ZZu

)T (14)
All mentioned covariance vectors and matrices are constructedon the basis of covariance functions and this study uses the follow-ing ones:

• Rational quadratic model or generalized Cauchy/Hirvonenmodel (Chiles and Delfiner, 1999; Meier, 1981):

C
(
d,σ2

n,σ2
s , r) =


σ2
n + σ2

s d = 0
σ2
s[1+( dr )2]α d > 0 (15)

where: α > 0, for α = 1 one obtains the Cauchy (Ohio) model(Jordan, 1972), for α = 1/2 the Moritz model, and for α = 3/2 thePoisson model (Meier, 1981);• Markov’s 2nd (Equation 16) and Markov’s 3rd (Equation 17) ordermodel (Radon transform of order 2 and 4 of the exponentialmodel) (Chiles and Delfiner, 1999; Jordan, 1972):
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σ2
s
(1 + d

r + d23r2
)
e–( dr ) d > 0 (17)

As may be seen, all the above models are supplemented by anugget effect structure. In fact, the mentioned nugget effect has abroader meaning than only a noise variance since it encompassesalso a microscale variation due to lack of knowledge of a processbehaviour at distances shorter than minimum distance betweenobservations.
3.3 Inverse distance weighting (IDW) interpolation

method

Inverse distance interpolation is a widely used technique mainlydue to its conceptual and numerical simplicity. In fact, it belongsto a broader class of spatial interpolation distance-decay models(e.g., exponential or Gaussian). The computational formula of IDWmethod is simply a weighted average of neighbouring values, as-signing larger weights to closer points (underlying assumption ofspatial autocorrelation), and it reads:
Ẑ0 = λTZ = λ1Z1 + λ2Z2 + . . . + λnZn (18)

with:
λi = d–α0i

n∑
j=1 d

–α0j
(i = 1..n) (19)

where subscript ‘0’ refers to the point being predicted, n is a numberof points from an adopted neighbourhood, α is a power parameter.Although the most common value of α in Equation (19) is 2, per-haps due to the analogy with the gravitational force model, thereis no particular explanation for this value. Since there is no ex-act recommendation about the choice of exponent and the optimalnumber of neighbouring points (Babak and Deutsch, 2009), there-fore, in this study, the leave-one-out and random crossvalidation
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were used to assist in finding the parameters. During the searchthe following values for the power parameter and number of neigh-bours were used: α = 1...5 with a step 0.5 and n = 3...N with a step 1,where N denotes all available data.

4 Results

In order to compare considered interpolation (prediction) methodsand their steering parameters impact on final results the leave-one-out and random crossvalidation procedures, described before, wereapplied. The following synthetic indicators of interpolation quality,measured through crossvalidation technique, were used:
• Mean Absolute Error (MAE):

MAE = 1
n

n∑
i=1

∣∣ei∣∣ ; (20)

• Root Mean Square Error (RMSE):

RMSE =
√√√√ 1
n

n∑
i=1
e2
i ; (21)

• Median Absolute Error (MeAE):
MeAE = med ∣∣ei∣∣ (22)

where e is a crossvalidation prediction error, i.e., the differencebetween observed ζOi (previously removed) and corresponding
predicted height anomaly ζPi :

ei = ζOi – ζPi (23)
The three measures were used to confirm or deny the repeata-bility of general tendency that a given set of steering parameters ofa method is superior to another.Both Kriging/LSC and IDW were applied to residuals obtainedafter 1st and 2nd degree polynomial trend surface removal. Anal-ysis of ordinary kriging (or LSC with a constant trend) and IDWperformance was tested with a local (using limited number of data)and global (using all available data) neighbourhoods using variousplanar covariance function models in case of kriging and variousexponents in case of IDW. In order to find the optimal parametersfor considered dataset the following procedure was implemented:
In case of kriging/LSC:Loops were run through all adopted covariance functions (com-puted once for the entire dataset) and number of neighbours vary-ing from 3 to n with the step of 1 neighbour, where n denotes allavailable data. Each time accuracy characteristics of LOOCV andMCCV were computed. In LOOCV this simulation gives 315 "bulk"predictions of 66 points (or 20790 single point predictions) for theadopted trend surface. In case of two trend surfaces the numbersdouble. In MCCV the simulation gives 250 "bulk" predictions of14 points (or 3500 single point predictions) for the adopted trendsurface in a single trial. Since the overall number of random trialswas 1000 this gives 250 000 "bulk" predictions (3 500 000 singlepredictions). In case of two trend surfaces the numbers double. Par-tial results concerning only one of the best performing structurefunction, the Poisson model, are presented in Figures 2 and 3. Itis worth mentioning that, in overall, the entire family of rationalquadratic models performed better than Markov’s models for thisdataset. Table 1 lists averaged (of all cases of the number of neigh-bours) MAE, RMSE and MeAE for a given structure function to givethe synthesized insight into the results.

Table 1. Averaged MAE, RMSE, MeAE for a given structure function
Structure function MAE[mm] RMSE[mm] MeAE[mm]
Rational Quadratic α = 1 6.6 8.3 5.2Rational Quadratic α = 1/2 6.7 8.3 6.0Rational Quadratic α = 3/2 6.6 8.4 5.1Markov’s 2nd 7.0 8.6 6.0Markov’s 3rd 7.5 9.4 5.8

In case of IDW:Loops were run through exponents α varying from 1 to 5 with 0.5increment and number of neighbours varying from 3 to nwith thestep of 1 neighbour, where n denotes all available data. Each timeLOOCV and MCCV accuracy characteristics were computed. Due tothe large number of results, only the most relevant are presentedin Figures 4 – 7. In LOOCV this simulation gives 567 "bulk" predic-tions of 66 points (or 37422 single point predictions) for the adoptedtrend surface. In case of two trend surfaces the numbers double. InMCCV the simulation gives 450 "bulk" predictions of 14 points (or6300 single point predictions) for the adopted trend surface in asingle trial. Since the overall number of random trials was 1000 thisgives 450 000 "bulk" predictions (6 300 000 single predictions).In case of two trend surfaces the numbers double.
The numbers above give an idea of the number of predictions per-formed to estimate the accuracy of the two methods and generate akind of confidence to the results obtained for this dataset.Figure 2 confronts the results of kriging’s based LOOCV (Fig. 2a)and MCCV (Fig. 2b) after removal of 1st degree polynomial trendsurface for the Poisson covariance function with varying neigh-bourhood size. Adopted quality measures MAE, RMSE, MeAE areslightly higher (~ 0.5 mm) for MCCV but this simply results fromthe removal of 20% of data (14 points) from the entire dataset. Also,plots of these statistics seem to be smoother but this results fromaveraging from 1000 repetitions of data random removal. In fact,this negligible difference confirms stability of this approach. It isvisible (mainly for the LOOCV) that the exhaustive neighbourhoodis not necessary to obtain satisfactory (or even best) results. Here,we notice that this occurs for something in between 10 – 15 nearestneighbours (but the difference is a fraction of a millimeter).Figure 3 shows the same statistics with detrending by meansof 2nd degree trend surface model. Statistics are slightly higherthan previously what indicates that, for this dataset, the structurehidden in residuals, generated after detrending, is better capturedfor the lower degree polynomial model. This shows that increasingtrend surface degree is not always justifiable. The overall behaviorof accuracy measures is similar, i.e., stabilization of values for in-creasing number of neighbours and some evidence that the nearestobservations may be enough to obtain satisfactory results.On the other hand, since the removal of quadratic trend surfaceturned out to be adequate for IDW method, and due to large numberof outcomes in this analysis (impossible to show all the statistics ona single chart without missing readability) only abbreviated resultswill be presented (showing all of them would take a lot of space andwould not contribute to a better insight into the problem).Figure 4 shows MAEs for the entire range of nearest neighbours(3 – 65) and exponents (1 – 5) in leave-one-out crossvalidation.The highest variability of this statistic is visible for the range of3 – 15 neighbours, then it stabilizes, except for exponents 1, 1.5,and 2 for which MAEs continue to grow up to ~30 neighbours (thesame holds for remaining statistics). The latter mentioned expo-nents characterize themselves with the highest MAE in overall,remaining ones stay roughly on the same level in the entire rangeof neighbours. Since Figure 3 is hard to read for small number ofneighbours, the Figures 5 – 7 presenting MAE, RMSE and MeAEobtained from LOOCV are limited to 15 nearest neighbours.
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(a) Leave-one-out crossvalidation (b) Random crossvalidation
Figure 2. Leave-one-out crossvalidation (a) and random crossvalidation (b) accuracy characteristics (MAE, RMSE, MeAE) with respect to the numberof neighbours for ordinary kriging with rational quadratic α = 3/2 (Poisson) semivariogram model after removal of planar trend

(a) Leave-one-out crossvalidation (b) Random crossvalidation
Figure 3. Leave-one-out crossvalidation (a) and random crossvalidation (b) accuracy characteristics (MAE, RMSE, MeAE) with respect to the numberof neighbours for ordinary kriging with rational quadratic α = 3/2 (Poisson) semivariogram model after removal of quadratic trend

Figure 4. MAE from LOOCV with respect to the number of neighbours(3 – 65, full range) for IDW with exponents varying from 1 to5 with 0.5 increment after removal of quadratic trend model
Figure 5.MAE from LOOCV with respect to limited number of neigh-bours for IDW
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Figure 6. RMSE from LOOCV with respect to limited number of neigh-bours for IDW

Figure 7. MeAE from LOOCV with respect to limited number of neigh-bours for IDW

In general, the Figures show the lowest values of the qualitystatistics for app. 5 – 10 nearest neighbours. The differences be-tween exponents are not significant from practical viewpoint (max-imum discrepancy less than 0.5 mm) except for exponents 1, 1.5and 2 for MAE and 1, 1.5 for RMSE and MeAE where upward ten-dency is visible (differences ~1 mm). Other exponents keep stabilitywithin shown range of neighbours. It clearly shows that this kindof analysis assists in selecting the proper exponent and numberof nearest neighbours necessary in order to obtain optimal resultsfor a given dataset. Accuracy statistics for LOOCV in case of pla-nar trend removal are app. 1 – 1.5 mm higher. Since IDW does notprovide an internal measure of interpolation quality the results ofcrossvalidation may be adopted as a global measure of IDW perfor-mance for a given set of parameters. As in kriging, due to the samereasons, adopted quality characteristics in random crossvalidationwere slightly higher ~1 mm for both cases of trend removal. It isalso worth noting that these results do not deviate much from thoseobtained from kriging. The best results for IDW measured by meansof MAE are for 6, 8 nearest neighbours, exponents 3.5, 3, 2.5 andthey are on the level of 6.8 mm. In case of ordinary kriging the bestresults measured by MAE are for 14 nearest neighbours and areon the level of 6.4 mm. The remaining statistics are 0.5 – 0.8 mmhigher for IDW than for kriging when mentioned configuration ofparameters is involved.

5 Conclusions

In this study, two methods of spatial prediction (interpolation) withvarying degree of complexity have been applied and compared in theproblem of a local (small-area) quasigeoid conversion surface mod-elling. The study showed no practical difference between results ofkriging/LSC and suitably chosen parameters for IDW interpolationfor analysed dataset. However the intra (within a method) and inter(between methods) differences in the entire range of steering pa-rameters may be significant. Both methods have their advantagesand disadvantages.

The main advantage of kriging/LSC is that the entire predictionprocedure is consistent in the sense that it results from strict rea-soning without a heuristic element. It also takes into account thespatial structure of the data through modelling either a covariancefunction or a semivariance function. But since the latter mentionedare inferred from the data, in fact, their empirical and analyticalform are analyst’s experience dependent. In addition, it provides aprediction variance that is a measure of prediction quality.On the other hand, IDW has an advantage over kriging/LSCsince it does not require solving any system of equations for theweights because it rests on a priori assumption of change of weightswith distance-decay. But as shown in this contribution, selectionof optimal distance-decay exponent and number of neighbours isnot straightforward. It is easy to automatize. In general, it does notprovide a measure of interpolation quality.The applied crossvalidation technique balances the advantagesand disadvantages of the methods since it assists in selecting opti-mal parameters for a given dataset and provides measures of cross-validation accuracy which may be accepted as a final measure ofmodel quality. The findings from this study show that a conversionsurface which compensate the inconsistency between the differ-ent types of heights with the average accuracy of less than 1 cm isachievable with the use of both tested methods.
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